平成22年度 電磁気学II(高瀬) 期末試験

2010.7.26

- 1. 半径 a の無限に長い誘電体 (誘電率 ϵ) の円筒の軸を z 軸とする。これに x 方向に一様な電場 $E_0\vec{x}$ をかけたとき,円筒の内外におけるポテンシャル分布を求めよ。
- 2. 磁性体を磁場 \vec{H} の中に置いたときに生じる磁化を $\vec{M}=\chi_{\rm m}\vec{H}$ と表せるとき, $\chi_{\rm m}$ を磁化率と呼ぶ。無限に広がった,磁化率 $\chi_{\rm m}$ で厚み a の磁性体に,外部磁場 \vec{H} を厚み方向に加えると,どれだけ磁化するか。この場合の磁性体内外の磁場 \vec{H} および磁束密度 \vec{B} の分布を求めよ。
- 3. 真空中をz方向に伝搬してきた,複素振幅 \hat{E}_{i0} の電場をもつ,周波数 ω の電磁波が, $z\geq 0$ の領域を占める金属の表面に垂直に入射してきた。但し σ および ϵ を金属の電気伝導率 および誘電率とし, $\omega\ll\sigma/\epsilon$ の場合を考える。真空の誘電率は ϵ_0 とし,入射電磁波の電場はx方向に偏向しているとする。
 - (a) z>0 における電場 $\vec{E}_{\rm m}(z,t)$ はどう表されるか。
 - (b) 金属表面から反射した電磁波の複素振幅を \hat{E}_{r0} とする。金属表面での接続条件より,電力反射率 $|\hat{E}_{r0}|^2/|\hat{E}_{i0}|^2$ を求めよ。
- 4. 束縛電子を調和振動子でモデルすると,誘電率は以下のように表される。

$$\frac{\epsilon}{\epsilon_0} = 1 + \frac{Ne^2}{\epsilon_0 m} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\omega\gamma_j}, \qquad \sum_j f_j = Z$$

但しN は分子の密度, f_j は 1 分子中で共鳴周波数 ω_j ,減衰率 γ_j をもつ電子の数を表し,Z は 1 分子あたりの全電子数である。振動子の減衰が弱く, $\gamma_j \ll \omega_j$ の場合,共鳴周波数 ω_j における(電力)吸収係数,およびこの吸収スペクトル線の(電力)半値全幅を求めよ。但し複素波数を $k=(\omega/c)\sqrt{\epsilon/\epsilon_0}=\beta+i\alpha/2$ としたとき, α を吸収係数と呼び, $|\alpha/\beta|\ll 1$ としてよい。