6 一般物理実験

6.1 高瀬研究室

高瀬研究室では、核融合発電の実現を目標に磁場 閉じこめ型トーラスプラズマの研究を行っている。 柏キャンパスに設置された TST-2 装置を用いた球状 トカマクプラズマの基礎研究を行うと共に、量子科 学技術研究開発機構の JT-60SA 装置、核融合科学研 究所の LHD 装置、京都大学の LATE 装置、 九州大 学の QUEST 装置を対象とした共同研究を進めてお り、海外との共同研究も実施している。

6.1.1 TST-2 実験の概要

TST-2 は球状トカマク(ST)型の装置であり、プ ラズマの主半径、小半径はおよそ 0.36、0.23 m、電磁 誘導、高周波動を用いた最大プラズマ電流はそれぞれ 120、27 kA である。ST は高い規格化圧力を安定に 維持できる方式として魅力的である。一方、通常ト カマクプラズマの電流駆動に用いられるセンターソ レノイドのための空間がないため、プラズマ電流の立 ち上げ維持は解決すべき課題である。TST-2 では、 主として低域混成波 (Lower-Hybrid Wave、LHW) を用いて高速電子を生成し、それにより電流を駆動 する研究を行っている。2020年度は、LHW による 電流駆動の高効率化と、駆動機構の解明をすすめ、パ ワーバランスを明らかにすることに成功した。LHW で誘起される代表的な不安定性であるパラメトリッ ク崩壊不安定性の詳細測定の結果、どのような条件 で、どのような場所で発生するかを明らかにした。ま た、プラズマの状態を詳細に把握するための、硬 X 線計測、干渉計計測、非等方電子温度計測の開発を 行った。電磁誘導を用いた場合、高電流高温プラズ マの生成が可能であるが、内部磁気リコネクション 現象が発生し、プラズマの性能を劣化させる。詳細 な解析の結果、現象発生時に、異なる温度速度をも つ2成分が現れることがわかった。

6.1.2 高周波実験

静電結合型進行波アンテナを用いて、200 MHz の LHW入射によるプラズマ電流駆動実験を行った。プ ラズマの外側と上側に設置された2台のアンテナを 用いることで、外側、上側及び下側模擬の3種類の 入射方法による電流駆動実験を行い、これまでに従 来法の誘導放電に比べて1/4 程度(27 kA)のプラ ズマ電流を達成している。

プラズマ周辺部を伝搬する LH 波とパラメトリッ ク崩壊不安定性による崩壊波の大域的な構造を調べ るために、高周波磁気プローブを新たに20チャンネ ル、プラズマを取り囲むように設置した。LH 波の外 側入射、上側入射による電流駆動実験を行い、励起 波に対して低周波側のサイドバンド(崩壊波)の割 合と波の偏光分布を調べた。外側入射では真空容器 内側で崩壊波の割合が高く(>200%)、相対的に 外側では小さい(<100%)という結果が得られた。 対照的に上側入射では、励起波に対する崩壊波の割 合が内側で小さく、下側から外側の領域で >300 % と大きな割合で存在していることがわかった。一方、 LH 波の偏光分布は外側入射では下側で揺動磁場の ポロイダル成分 Bpol が強く、内側ではトロイダル成 分 Btor が強く観測された。上側入射では内側上部の アンテナ近傍のプローブで Bnol が強く、内側下部に 行くに従い Btor が支配的になった(図 6.1.1)。

図 6.1.1: LH 波電流駆動実験における (i) 外側入射 (ii) 上側入射時の (a) 励起波に対する崩壊波の割合と (b) 励起波の偏光分布。

電子分布計測

TST-2 の LHW 電流駆動プラズマの電子密度は 10¹⁷ m⁻³ 台であり、トムソン散乱法による電子温度 密度計測は容易ではない。そこで、積算回数を 20 ま で増加させることで、周辺の低密度領域を精度よく 計測することを試みた。その結果、同一磁気面上で 電子温度に有意な差がある場合とない場合があるこ とが観測された。これまでの既知の理論では、同一 磁気面上での電子温度の差は説明できず、さらなる精 度の向上と測定誤差の吟味が今後の課題である。一 方、周辺部の電子温度が中心部よりも高いことは明 らかであり、これの原因について考察を進めた。典 型的な温度は、周辺部:86 eV 程度、中心部:36 eV 程度であり、典型的な密度は 1.1×10¹⁷ m⁻³ である。 これまでの理論等から周辺部で LHW により高速電 子が生成され、高速電子とバルク電子の衝突により、 周辺部の電子が加熱されると考えられ、加熱パワー は10 kW 程度(ただし、ファクター程度の不確定性 がある)と予想されている。この加熱パワーが温度 勾配と面積に比例して、周辺部の外側と内側、すな わち中心部側へ分配されるとすると、中心部加熱パ ワーは 2.8 kW となる。定常状態ではこれに等しい 冷却パワーが存在しなければならない。中心部電子 の冷却機構として (1) 中性粒子のイオン化 (2) 放射 を考え、概算したところ、(1)のイオン化の寄与が大 きく、パワーは 0.2 kW 程度であった。理論の精度 や仮定を考慮するとイオン化で実験結果を説明でき る可能性がある。

高周波誘起輸送モデル

プラズマ中の電子は、LHW の電場で加速減速を受 けるが、これは、速度空間内の拡散と見なすことが できる。拡散で生成された高速電子は、イオン、電 子、中性粒子との衝突により減速される。高速電子 の磁力線に平行方向の速度が支配的であり、垂直方 向の速度は無視できるという近似では、上記の速度 空間内での加速減速と実空間での輸送がほぼ一対一 に対応付けられる。これは、高周波励起輸送と呼ば れる現象である。実空間内で輸送された高速電子は プラズマ形状を決めるリミターに衝突し、いわゆる Thick Target X-ray を生成する。さらに、この X 線 が検出されるまでの過程をモデル化することで、観 測と比較することが可能となった。図 6.1.2 は、この ようにして予測された X線のスペクトルと実測を二 つのケースで比較したものであり、スペクトル形状 が再現されていることがわかる。このことは、モデ ルが定性的に正しいことを示しており、高速電子の 振る舞いの本質を理解できたことを意味する。解析 の結果、LHW で維持されたプラズマ中の主なパワー 損失は、加速された電子のリミターへの衝突であり、 その過程で電流を駆動しつつ、バルク電子やイオン を加熱することがわかった。

6.1.3 OH 実験

内部磁気再結合現象

球状トカマクに特有の MHD 不安定性である内部 磁気再結合(Internal Reconnection Event, IRE)に おける、イオン温度、イオン流速をイオンドップラー 分光法を用いて測定した。通常、イオンはマクスウェ ル分布を示し、ある発光線の分光スペクトルは、1成 分のマクスウェル分布で表され、フィットもよいが IRE時にはフィッティングの残差 x2 乗が他の時間帯

図 6.1.2: モデルで予測した X 線スペクトルと計測し た X 線スペクトル。プラズマの大きさの異なる二つ のケースについて示した。なお、モデルの予測値は 絶対値を 1/9 倍して示してある。

に比べて悪化することが確認された。そのため、IRE 時の測定結果に対し、複数成分のマクスウェル分布 によりフィットを行った。その結果 χ2 乗が改善す ることがわかり、また交差検証により、2 成分マク スウェル分布のモデルのほうがより妥当であるとい う結果を得た。フィットの結果はプラズマ中に低温 (<100 eV)と高温(~200 eV)の異なるフロー速度 の成分が同時刻に存在することを示し、IRE 以前か ら存在した低温成分と IRE によって新たなに生成さ れた高温成分が見えていると解釈できる。

6.1.4 計測器の開発

トムソン散乱計測

電子温度の異方性を観測するため、ダブルパスト ムソン散乱計測系の開発を行なった。図 6.1.3 は光学 系の模式図である。終端鏡(Endmost mirror)の傾 きが系全体のアラインメントにとって重要であるこ とがわかった。光路は計測精度を最大化すると同時 に、反射光による YAG レーザー損傷のリスクを最 小化するように最適化した。最適化されたパラメー タにおける光路に沿ったビーム系の計算値と計測値 を図 6.1.4 に示す。

硬 X 線計測

LH プラズマからの制動放射硬 X 線計測において、 信号処理回路の改良を行うことにより硬 X 線のパル ス幅を一桁減少させ、1 ms オーダーの時間分解能で の測定が可能となった。一方観測されている硬 X 線 が壁に当たった電子からのものが支配的であるとい う予測があり、壁を見込まない視線での測定および

図 6.1.3: ダブルパストムソン散乱計測系の模式図。

図 6.1.4: 最適化したビーム系の計算値と計測値。

ターゲット板の挿入実験により、予測を検証する準 備を進めている。

干渉計による電子密度計測

複数視線で同時に電子密度測定を行うために垂直 視線 50 GHz マイクロ波干渉計を、既存設備の老朽 化のため径方向 104 GHz マイクロ波干渉計を新たに 制作している。50 GHz 干渉計はヘテロダイン構成 のマイクロ波回路と位相検出のための IQ 回路が組 み上がり、導波管を配管すれば完成する状況にある。 104 GHz 干渉計については、センタースタック(CS) に反射させて得られるマイクロ波のパワーが入射パ ワーよりも非常に小さくなるという既存の干渉計の 問題点を解消するため、光学系を新たに設計してい る。プラズマの外側赤道面付近にホーンアンテナと ミラーを一体にしたホグホーンアンテナを設置して CS で集光し、CS にも平らなミラーを設置すること で入射パワーの大部分を受信できるようにすること を目指す。

6.1.5 共同研究

QUEST におけるトムソン散乱計測

当研究室では、九州大学 QUEST グループとの共 同研究で先進的トムソン散乱システムの開発を行っ ている。これまで、トムソン散乱システムの運用は 我々だけで行ってきたが、2020 年度からは、先方の 人的協力を得て、共同運用体制の構築、稼働率向上を 目指した。具体的には、先方の人材の教育、当研究室 メンバーの遠隔実験参加の試験、省力化のための自 動データ収集システムの作成を行った。また、省力 化と精度向上のためにビームモニターの試験を行っ た。図 6.1.5 は、白黒アナログカメラによるビームモ ニター画像を示したもので、ミラーでのレーザーの 散乱光が綺麗に観測されることがわかかる。これに より十分な精度でビームの位置がモニターできるこ とが確認された。

図 6.1.5: 白黒アナログカメラで撮影したレーザーモ ニター画面。中央の楕円が YAG レーザースポット を表す散乱光、左端の半月状の構造はミラーホルダー 上の散乱光を表す。

JT-60SA における EC 補助オーミック立ち上げ

近年世界的に実験が開始されている、JT-60SA を はじめとする超伝導センターソレノイド (CS) を持 つ装置では、生成できる周回電場が限られるため、プ ラズマの立ち上げが従来の常伝導 CS 装置よりも難 しい。CS による立ち上げにおいて、ブレークダウン を開始するためにはポロイダル磁場を十分広い領域 で、長い時間にわたって0に近づける必要がある(ヌ ル磁場配位)。周回電場が低いほど精度の良いヌル磁 場を長時間維持する必要があるが、電子サイクロト ロン (EC) 波を立ち上げ時に補助的に照射すること で、簡単にブレークダウンを開始できることが知ら れている。一方、EC 波による補助を用いる場合、垂 直磁場をかけた方が立ち上げには適している可能性 が近年実験的に示唆されている。2020年度は無衝突 と多衝突の2つの極限での近似モデルを新たに開発 し、立ち上げの EC 電力と垂直磁場依存性を定性的 に説明することができた。

EXL-50 における低域混成波入射系開発

中国 ENN 社の EXL-50 球状トカマク装置における LHW 電流駆動系の開発を行なった。従来とは異なるパラメータ領域で電流駆動が可能な波を励起す

るため、コルゲート表面を用いたアンテナを新たに設計・制作し、TST-2で試験した。200 MHz の LHW で駆動されるプラズマに、2.45 GHz の LHW を新型 アンテナにより励起した。その結果、2.45 GHz 入射時に X 線放射強度が顕著に増加し、期待された電子 加速が実際に起こっていることが確認できた。

<報文>

(原著論文)

- J.H.P. Rice, N. Tsujii, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, Y. Peng, K. Iwasaki, Y. Aoi, Y. Ko, K. Matsuzaki and Y. Osawa: "Langmuir Probe Measurements of Scrape-Off Layer Conditions in RF-Driven Plasmas in TST-2," Plasma and Fusion Res. 15, 2402009 (2020).
- [2] N. Tsujii, Y. Yoshida, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, Y. Peng, K. Iwasaki, Y. Aoi, Y. Ko, K. Matsuzaki, J.H.P. Rice and Y. Osawa: "Studies of a Lower-Hybrid Wave Driven Plasma Equilibrium with a Hybrid-MHD Model on the TST-2 Spherical Tokamak," Plasma Fusion Res. 15, 2402010 (2020).
- [3] A. Ejiri, Y. Aoi, H. Yamazaki, N. Tsujii, Y. Takase, O. Watanabe, Y. Ko, J.H.P. Rice, Y. Peng, K. Iwasaki, K. Matsuzaki, Y. Osawa and Y. Yoshimura: "Development of a Compact Hard X-Ray Camera on the TST-2 Spherical Tokamak," Plasma Fusion Res. 15, 1202023 (2020).
- [4] Y. Nagayama, A. Ejiri, Y. Takase, N. Tsujii, H. Nakanishi, M. Ohsuna, H. Tsuchiya and S. Yamaguchi: "Measurement of Electron Density Fluctuations Using O-Mode Microwave Imaging Reflectometry in a TST-2 Spherical Tokamak," Plasma Fusion Res. 15, 2402060 (2020).
- [5] S. Mori, T. Shikama, K. Hanada, N. Yoneda, A.A. Kuzmin, M. Hasuo, H. Idei, T. Onchi, A. Ejiri, Y. Osawa, Y. Peng, K. Matsuzaki, S. Kado, K. Sawada, T. Ido, K. Nakamura, R. Ikezoe, Y. Nagashima, M. Hasegawa, K. Kuroda, A. Higashijima, T. Nagata and S. Shimabukuro: "Spectroscopic Measurement of Hydrogen Atom Density in a Plasma Produced with 28 GHz ECH in QUEST," Atoms 8, 44 (2020).
- [6] T. Onchi, H. Idei, M. Fukuyama, D. Ogata, R. Ashida, T. Kariya, A. Ejiri, K. Matsuzaki, Y. Osawa, Y. Peng, S. Kojima, O. Watanabe, M. Hasegawa, K. Nakamura, K. Kuroda, R. Ikezoe, T. Ido, K. Hanada, N. Bertelli, M. Ono and A. Fukuyama: "Non-inductive plasma current ramp-up through oblique injection of harmonic electron cyclotron waves on the QUEST spherical tokamak," Phys. Plasmas 28, 022505 (2021).
- [7] N. Yoneda, T. Shikama, K. Hanada, S. Mori, T. Onchi, K. Kuroda, M. Hasuo, A. Ejiri, K. Matsuzaki, Y. Osawa, Y. Peng, Y. Kawamata, S. Sakamoto, H. Ideib, T. Ido, K. Nakamura,

Y. Nagashima, R. Ikezoe, M. Hasegawa, A. Higashijima, T. Nagata, S. Shimabukuro: "Toroidal flow measurements of impurity ions in QUEST ECH plasmas using multiple viewing chords emission spectroscopy," Nuclear Materials and Energy **26**, 100905 (2021).

[8] Y. Peng, A. Ejiri, Y. Takase, N. Tsujii, O. Watanabe, K. Iwasaki, Y. Ko, J.H.P. Rice, Y. Osawa, G. Yatomi, I. Yamada, T. Ido, Y. Nagashima and K. Kono: "Investigation on Double-Pass Configurations for Thomson Scattering Measurements," Plasma Fusion Res. 16, 1402027 (2021).

(国内雑誌)

- [9] 高瀬雄一:「TST-2 における MHz 帯電磁波による波 動加熱実験」J. Plasma Fusion Research **96**, 655–659 (2020).
- [10] 關良輔、辻井直人: 「TASK-WM や AORSA を用 いた波動加熱シミュレーション」J. Plasma Fusion Research 96, 669–673 (2020).

(学位論文)

[11] 大澤佑規:「TST-2 球状トカマク装置における周辺部 電子温度密度計測」

(国際会議)

一般講演

- [12] A. Ejiri, H. Yamazaki, Y. Takase, N. Tsujii, K. Shinohara, O. Watanabe, Y. Yoshimura: "A Model for Lower Hybrid Wave Induced Transport on the TST-2 Spherical Tokamak," 29th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan (online), Oct. 27–30, 2020.
- [13] Y. Peng, A. Ejiri, Y. Takase, N. Tsujii, O. Watanabe, K. Iwasaki, Y. Ko, J.H.P.Rice, Y. Osawa, G.Yatomi, I. Yamada, T. Ido,Y. Nagashima and K. Kono: "Theoretical Investigation on Double-Pass Configurations for the Thomson Scattering Measurements," 29th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan (online), Oct. 27–30, 2020.
- [14] Y. Nagashima, Κ. Hanada, S. Kojima, H.O.ELSerafy, Η. Zushi, К. Nakamura, M. Hasegawa, H. Idei, A. Fujisawa, A. Ejiri, Takase, T. Ido, K. Kuroda, T. Onchi, Υ. R. Ikezoe, S. Kawasaki, T. Nagata and A. Higashijima: "Development of an electrode system for edge/scrape-off layer measurements during steady state tokamak operations in QUEST," 29th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan (online), Oct. 27-30, 2020.
- [15] Y. Takase: "Survey of RF research on TST-2," 9th Workshop on Plasma start-up and sustainment in spherical tokamak configuration by RF, online, Jan. 25–27, 2021.

<学術講演>

- [16] A. Ejiri: "Electron temperature and density profile measurements by Thomson scattering systems on TST-2 and QUEST," 9th Workshop on Plasma start-up and sustainment in spherical tokamak configuration by RF, online, Jan. 25–27, 2021.
- [17] N. Tsujii: "Electron cyclotron heating assisted Ohmic start-up in the trapped particle configuration on spherical tokamaks," 9th Workshop on Plasma start-up and sustainment in spherical tokamak configuration by RF, online, Jan. 25–27, 2021.
- [18] A. Ejiri, H. Yamazaki, Y. Takase, N. Tsujii, K. Shinohara, O. Watanabe, Y. Yoshimura: "RF induced transport model for lower hybrid wave sustained TST-2 plasmas," Korea-Japan Workshop on Physics and Technology of Heating and Current Drive, Feb. 25–26, 2021.
- [19] N. Tsujii, Y. Ko, Y. Takase, A. Ejiri, K. Shinohara, O. Watanabe, Y. Peng, K. Iwasaki, Y. Osawa, G. Yatomi and I. Yamada: "Electron cyclotron wave assisted Ohmic start-up in the trapped particle configuration in spherical tokamaks," Feb. 25– 26, 2021.
- [20] Y. Ko: "Polarization and PDI measurement using RF magnetic probes in TST-2 LH-driven plasma," Feb. 25–26, 2021.

(国内会議)

一般講演

- [21] 江尻晶:「大学等における高温プラズマの研究」Fusion2030 研究会 週イチ Zoom 研究会(第4回),オ ンライン, 2020 年 6 月 24 日.
- [22] 江尻晶,菊池崇志,三瓶明希夫,浅井朋彦,稲垣滋, 江原真司,近藤創介,片山一成,森芳孝:「大学等の アクティビティの現状」Fusion2030研究会第一回全 体会議,オンライン,2020年7月1日.
- [23] 江尻晶,TST-2 チーム:「TST-2 球状トカマクこれ までの成果、今後の展望」Fusion2030 研究会 週イチ Zoom 研究会(第7回),オンライン,2020 年7月 22 日.
- [24] 辻井直人,高瀬雄一,江尻晶,渡邉理,山崎響,彭 翊,岩崎光太郎,高竜太,RICE James,大澤佑規: 「TST-2の最近の研究」研究会「先進トカマク開発の ための実験研究」、オンライン、2020年9月 29–30日.
- [25] 大澤佑規,江尻晶,彭翊,弥富豪,辻井直人,高瀬雄 一,渡邉理,岩崎光太郎,高竜太,James Rice,山 田巌:「TST-2 におけるトムソン散乱計測法を用いた 低域混成波電流駆動プラズマの電子温度計測」研究会 「先進トカマク開発のための実験研究」,オンライン, 2020 年 9 月 29–30 日.
- [26] 高竜太, 辻井直人, 高瀬雄一, 江尻晶, 渡邉理, 山崎 響, James H.P. Rice, Peng Yi, 大澤佑規:「TST-2 における EC アシスト低周回電場 OH プラズマ立ち 上げの最適化」研究会「先進トカマク開発のための実 験研究」, オンライン, 2020 年 9 月 29–30 日.

- [27] 高竜太, 辻井直人, 高瀬雄一, 江尻晶, 渡邉理, 山崎 響, 岩崎光太郎, James H.P. Rice, Peng Yi, 大澤佑 規, 若月琢馬, 吉田麻衣子, 浦野創:「TST-2 球状ト カマクにおける EC 波アシスト低誘導電場プラズマ 立ち上げの最適化」第 37 回プラズマ・核融合学会年 会、オンライン、2020 年 12 月 1-4 日.
- [28] 辻井直人,高瀬雄一,江尻晶,渡邉理,彭翊,岩崎光 太郎,高竜太,James Rice,大澤佑規,弥富豪,山 田巌:「TST-2 における低域混成波駆動プラズマの電 流分布計測のためのマイクロ波偏光計開発」第37回 プラズマ・核融合学会年会、オンライン、2020年12 月1-4日.
- [29] 弥富豪、江尻晶、高瀬雄一、辻井直人、渡邉理、彭翊、 岩崎光太郎、高竜太、James Rice、大澤佑規、山田 巌:「TST-2 における硬 X 線カメラ計測システムの信 号処理回路の改良」第 37 回プラズマ・核融合学会年 会、オンライン、2020 年 12 月 1-4 日.
- [30] 大澤佑規, 江尻晶, Peng Yi, 弥富豪, 高瀬雄一, 辻井 直人, 渡邉理, 山崎響, 岩崎光太郎, 高竜太, James. H. P Rice, 山田巌:「TST-2 におけるトムソン散乱 計測法を用いた低域混成波電流駆動プラズマの電子 温度計測、第 37 回プラズマ・核融合学会年会、オン ライン、2020 年 12 月 1-4 日.
- [31] 山田巌、辻井直、江尻晶、高瀬雄一、渡邉理、岩崎光 太郎、彭翊、高竜太、James Rice、大澤佑規、弥富 豪:「TST-2 における低域混成波駆動プラズマの電子 密度計測」第 37 回プラズマ・核融合学会年会、オン ライン、2020 年 12 月 1-4 日.
- [32] 江尻晶、山崎響、高瀬雄一、辻井直人、篠原孝司、渡 邉理、吉村泰夫:「TST-2 球状トマカクにおける低域 混成波誘起輸送モデル」第 37 回プラズマ・核融合学 会年会、オンライン、2020 年 12 月 1-4 日.
- [33] A. Ejiri, M. Hirata, S. Ichimura, R. Ikezoe, S. Kamio, M. Yoshikawa: "Fast visible light measurements for the study of RF waves in plasma," 核融合エネルギーフォーラムプラズマ物理クラスター 計測サブクラスター令和2年度第1回会合、核融合 科学研究所(オンライン)2021年2月10日.
- [34] 江尻晶,高瀬雄一,辻井直人,渡邉理,篠原孝司:「外部ソースを考慮した誘導予備電離の理論研究」日本物理学会第76回年次大会、オンライン開催 2021年3月12-15日.
- [35] 辻井直人,高瀬雄一,江尻晶,渡邉理,篠原孝司,彭 翊,岩崎光太郎,高竜太,RICE James,大澤佑規, 弥富豪,山田巌:「TST-2 球状トカマク装置の低域混 成波駆動トカマクプラズマにおける高速電子のダイ ナミクス」日本物理学会第 76 回年次大会、オンライ ン開催 2021 年 3 月 12–15 日.
- [36] 弥富豪、江尻晶、高瀬雄一、辻井直人、篠原孝司、渡 邉理、彭翊、岩崎光太郎、高竜太、大澤佑規、山田巌: 「TST-2 における硬 X 線測定とプラズマ電流の減衰 時定数についての研究」第23回 若手科学者によるプ ラズマ研究会、オンライン開催 2021 年3月 16–17日.
- [37] 山田巌, 辻井直人, 江尻晶, 高瀬雄一, 篠原孝司, 渡邉 理, 岩崎光太郎, 彭翊, 高竜太, James Rice, 大澤佑規, 弥富豪:「TST-2 における低域混成波駆動プラズマの

電子密度の振る舞い」第 23 回 若手科学者によるプラ ズマ研究会、オンライン開催 2021 年 3 月 16–17 日.

6.2 山本研究室

6.2.1 はじめに

【星・惑星系形成】

恒星および惑星系の形成は、宇宙における最も基本 的な構造形成過程の1つであるとともに、我々の太 陽系の起源、生命の起源に直結するテーマでもある。 そのため、観測・理論両面から活発な研究が行われ ている。本研究室では、特に太陽系近傍における星・ 惑星系形成とそこでの物質進化を、電波観測によっ て研究している。

新しい星は、星間ガスが自己重力で収縮して形成 される。星間ガスの集まり(星間雲)の中で最も密 度が高いものが星間分子雲で、新しい恒星と惑星系 が形成される現場である。星間分子雲の主成分は水 素分子であるが、様々な原子・分子も僅かに存在し ている。これまでの研究で、それらの組成は星間分 子雲の物理進化の歴史を克明に記憶していることが わかってきた。即ち、微量分子の組成から、現在の 物理状態だけでなく、「過去」を辿ることができる。 本研究室では、このような物質的視点を軸に、星・惑 星系形成過程を多面的に研究している。

【なぜ電波か】

星間分子雲の温度はおよそ 10 K 程度である。この 「宇宙の中でも最も低温の天体」は、最もエネルギー の低い電磁波である「電波」を主に放射する。しか も、電波は光などに比べて星間物質による吸収散乱 を受けにくく、透過力が高い。そのため、星間分子 雲の奥深くで起こる星形成の核心部分を見通すこと ができる。また、電波領域には原子・分子のスペク トル線が多数存在し、それらの観測で星間分子雲の 運動や分子組成がわかる。

【ALMA (アルマ)による観測】

ALMA (Atacama Large Millimeter/submillimeter Array) は、日本、北米、欧州の共同で、チリの標高 5000 m のアタカマ高原に建設された、12 m アンテ ナ 54 台と 7 m アンテナ 12 台からなる巨大電波干渉 計である。我々のグループはこれを積極的に活用し 研究を進めている。ALMA はこれまでの観測装置よ りも 2 桁高い感度と解像度を実現し、星・惑星系形 成の理解を大いに進展させつつある。

6.2.2 星·惑星系形成

原始星円盤から原始惑星系円盤への物質進化の理 解は、近年急速に進みつつある。その重要な結果の 一つは、低質量星近傍の分子組成が天体ごとに顕著 に違うことがわかった点である。その一つの典型は、 HCOOCH₃ などの大型飽和有機分子が原始星近傍の 100 AU 程度の領域に豊富に見られる天体で、ホット コリノ天体と呼ばれる(へびつかい座の IRAS16293-2422 など)。もう一つの典型は、炭素鎖分子などの不 飽和有機分子が異常に豊富な天体(おうし座の L1527、 おおかみ座の IRAS15398-3359)で、WCCC(Warm Carbon-Chain Chemistry)天体と呼ばれる。このよ うな分子組成の違いの原因は、母体となる分子雲の 収縮時間の違いによると考えられ、星形成研究にお いても注目され始めている。

さらに重要なことは、このような分子組成の違い がどのように惑星系へ伝播されるかである。この点 についても、ALMA を用いた本研究室の研究により 理解が大きく進みつつある。角運動量を保ちつつ回 転落下するガスは、遠心力バリア(近日点)より内 側には入り込めないため、その近傍で後から落下す るガスと衝突して弱い降着衝撃波が発生する。その 様子が実際に ALMA で捉えられつつある。さらに 遠心力バリア近傍を境として、ガスの分子組成が劇 的に変化することが明らかになってきている。この ことを利用すると、分子組成を特定の物理状態をハ イライトする「マーカー」として利用できる。これ らの成果は、原始惑星系円盤への物質進化を理解す る上で非常に重要な一歩であり、これらの点を中心 に、星・惑星系形成に関する幅広い研究を展開して いる。

星間分子雲から惑星系への物質進化

 \boxtimes 6.2.1: A schematic illustration of our goal

特に、2018年に、本研究グループが中心(山本が PI)となり、仏、伊、独、米などの研究者と共同し て提案していた、FAUST(Fifty AU STudy of the chemistry in the disk/envelope system of Solar-like protostars)という ALMA 大型観測プログラムが採 択され、観測が進行中である。FAUST は 13 個の太 陽型原始星に対して、同一の感度、同一の実空間分 解能(50 au)、および同一の分子輝線で観測するこ とにより、それらの物理構造と化学組成の特徴の全 貌を明らかにしようとするものである。系統的に観 測を遂行することにより、星・惑星系形成における 物理・化学進化の全容を明らかにできると期待され る。

ALMA による観測では、膨大な分子スペクトル線 データが得られるが、これまではその中から適切な