6 一般物理実験

6.1 高瀬研究室

高瀬研究室では、核融合発電の実現を目標に磁場 閉じこめ型トーラスプラズマの研究を行っている。 柏キャンパスに設置された TST-2 装置を用いた球状 トカマクプラズマの基礎研究を行うと共に、量子科 学技術研究開発機構で建設中の JT-60SA 装置、核融 合科学研究所の LHD 装置、京都大学の LATE 装置、 九州大学の QUEST 装置を対象とした共同研究を進 めており、海外との共同研究も実施している。

6.1.1 TST-2 実験の概要

TST-2 は球状トカマク (ST) 型の装置であり、プ ラズマの主半径、小半径はおよそ 0.36、0.23 m、電磁 誘導、高周波波動を用いた最大プラズマ電流はそれぞ れ 120、28 kA である。ST は高い規格化圧力を安定 に維持できる方式として魅力的である。一方、通常ト カマクプラズマの電流駆動に用いられるセンターソ レノイドのための空間がないため、プラズマ電流の立 ち上げ維持は解決すべき課題である。TST-2 では、 主として低域混成波(Lower-Hybrid Wave、LHW) を用いて高速電子を生成し、それによる電流駆動の 研究を行っている。2019年度は、硬 X 線計測、スク レープ・オフ層プラズマの計測、バルク電子の密度 温度計測を充実させるとともに、波動の作る磁場揺 動の計測を行った。これらを通じて、高速電子輸送 や波動伝搬・吸収の理解を深化させた。また、プラ ズマ立ち上げの物理を明らかにするための基礎実験、 小型センターソレノイドによるプラズマ形状制御実 験を行い成果を得た。

6.1.2 高周波実験

静電結合型進行波アンテナ実験

TST-2 では静電結合型進行波(Capacitively Coupled Combline)アンテナを用いて 200 MHz の低域 混成波(LHW)の入射によるプラズマ電流駆動実験 を行っている。装置の外側および上側に設置された 二台のアンテナを用いることで、外側、上側および 下側模擬の三種類の入射位置による電流駆動実験を 行い、これまでに最大 28 kA のプラズマ電流を達成 している。

LHW は、プラズマ中に高速電子を生成することで プラズマ電流を駆動することから、高速電子が放射す る X 線の測定が、重要な計測のひとつとなっている。 今年度はシンチレーション検出器を用いた硬 X 線計 測を行った結果、プラズマから放射される X 線は、 プラズマの最外殻磁気面の径方向位置とアンテナリ ミターの距離が離れているほど、高エネルギーとな る傾向を示すことがわかった。この X 線は LHW に よって生成された高速電子が装置外側のアンテナリ ミターに衝突することで放射されていると考えられ、 RF 誘起輸送を取り入れたモデル計算の結果と定性 的に一致することが確かめられた。また、入射する LH パワーの AM 変調実験の結果、プラズマからの 硬 X 線放射は 10 μs 以下の時間スケールで LHW の 変調に応答することがわかり、理論的に予測される 高速電子の閉じ込め時間よりもはるかに高速である ことから、閉じ込めが悪くプラズマ電流を担ってい ない電子の存在が示唆された。さらに、プラズマ中 に Mo 製のターゲット球を挿入した実験では、Mo 球 がアンテナリミターよりプラズマ側に存在する場合 に、プラズマの最外殻磁気面から Mo 球が離れてい ても非常に高いエネルギーフラックスの X 線が放射 されることがわかった。この X 線は高速電子が Mo に衝突することに由来する Thick-target 放射である と考えられ、プラズマの最外殻磁気面よりも外側に プラズマ電流に寄与しない高速電子が多数存在して いることが実験的に確かめられた。

高周波プローブ計測

真空容器内側、下側と外側に設置した計 14 個の高 周波磁気プローブを用いて、パラメトリック崩壊不安 定性(Parametric Decay Instabilities、PDI)による LH 波の崩壊波が観測された。LH 波の外側入射、上 側入射、下側模擬入射の3つの入射方法による励起波 に対する崩壊波のパワー割合を計測した(図 6.1.1)。 外側入射では、真空容器外側よりも内側で PDI が強 かった(>50%)。対照的に上側入射では、真空容器 内側での PDIパワーの割合は小さく(<50%)、下側 と外側では 100%以上の割合で存在していることが 確認された。下側模擬入射時では、内側での割合は 20%以下と小さく、下側から外側へと PDIパワーの 割合が増加することがわかった。実験はプラズマ電 流値~20 kA で行われたが、崩壊波の出現による大 きな電流駆動効率の低下は見られなかった。

静電プローブ計測

スクレープ・オフ層のプラズマを計測するため、静 電プローブ(ラングミュア・プローブ)アレーを新 たに製作・設置した。新しいプローブアレーにより、 電子密度は10¹⁷ m⁻³ 程度、電子温度は高周波電力オ ン時には30-100 eV、オフ時には10 eV 以下である ことが計測された。プローブにより計測された I-V 特性の評価には通常電子が熱的(マクスウェル分布) であることを仮定する。しかし、高周波駆動プラズ マにおいては、特にプラズマ周辺部において、非熱

10 10 T_e: 8 eV unit] 10-6 T_e: 200 eV f_e [arb. 10 10-8 10⁻⁹ 140 80 20 40 60 100 120 ε [eV]

図 6.1.1: 各入射方法における励起波(199.9–200.2 MHz)に対する崩壊波(100–199.8 MHz)の
 割合。黒:水素プラズマ、赤:重水素プラズマ、灰:
 真空入射。丸印:RF磁場のトロイダル偏光成分、米
 印:RF磁場のポロイダル偏光成分。

н.

RF magnetic probes

的な高速電子が熱的な電子と同程度存在し得るため、 I-V 特性から分布関数を推定することを試みた。その結果、高周波電力オン時には、8 eV の熱的な分布 に加えて、<1 keV の成分が存在することが初めてわ かった(図 6.1.2)。

電子温度計測

0.0

最近の放電において、プラズマの中心電子温度が 典型的な値(10-20 eV)よりも 2-3 倍高い放電があ ることがわかった。そこで、プラズマの中心電子温 度の電子密度、高周波電力、トロイダル磁場に対す るスケーリングを求めた。その結果、電子温度 Te は概ね電子密度 $n_{\rm e}$ に反比例していることがわかった $(T_{\rm e} \propto n_{\rm e}^{-1.2\pm0.11})$ 。磁場 $B_{\rm t}$ に対しては強い正の 相関があった($T_{
m e} \propto B_{
m t}^{0.72 \pm 0.16}$)。磁場強度が高い 程、高周波がプラズマ中心部まで伝搬できるように なるので、これは妥当な結果である。一方、高周波 電力 $P_{\rm RF}$ への依存性は認められたものの、小さかった ($T_{\rm e} \propto P_{\rm RF}^{0.11\pm0.079}$)。これは駆動電流が入射電力 に対して飽和しているという数値計算の結果と矛盾 しない。プラズマ電流 Ip に対しては、弱い負の相関 があった $(T_{\rm e} \propto I_{\rm p}^{-0.13 \pm 0.12})$ 。高速電子の軌道損失 を考えると、これは予想と逆であるが、いずれにし ても弱い依存性である。また、バルク電子の加熱が 高速電子との衝突によるものと仮定し、エネルギー 閉じ込め時間を評価したところ、ITER の L モード 閉じ込め時間のスケーリングと矛盾しないことがわ

図 6.1.2: プローブの I-V 特性から求められた電子速 度分布関数。2 つの異なる温度を持つ成分が存在す ることがわかる。

かった。

拡張 MHD 平衡計算

低域混成波よるプラズマ立ち上げを定量的に記述 するためには、有限軌道幅での波動伝搬と軌道平均 フォッカー・プランク計算、高速電子を含む拡張 MHD 平衡計算を全て自己無撞着に行う必要がある。この うち MHD モデルの拡張に関して、運動論的に記述 される無衝突高速粒子とバルク MHD を組み合わせ た拡張 MHD による平衡計算を行った。LH 波によ り生成される高速電子の速度空間・実空間分布は、ゼ ロ軌道幅の光線追跡と起動平均フォッカー・プラン ク計算で得られた知見をもとにパラメータ化した。

TST-2の典型的な上側入射による放電のフラット・ トップにおいて、拡張 MHD による平衡計算を適用 したところ、高速電子の有限軌道幅効果により、最 外殻磁気面の外側に自然に電流が現れた(図 6.1.3)。 プローブによってバルク電子と同程度の密度の高速 電子がスクレープ・オフ層に観測されているが、この 計算結果はそれと矛盾しない。また、従来の平衡計 算に比べて、電子密度分布のフィッティング誤差が 32 %減少した。誤差が減少したのは、高速電子電流 が高磁場側に高い電流密度を作ることで、ポロイダ ル磁束分布がよりピークした分布になり、電子密度 分布とより整合性が取れるようになったためであっ た。LH立ち上げプラズマにおいては、軌道が磁気面 から大きくずれる高速電子の作る磁場が支配的であ るが、従来の平衡計算では最外殻磁気面の外を流れ る電流をどのように記述するかは自明ではなかった。 この結果により、LH 立ち上げプラズマの平衡が、高 速電子によって、どの程度従来の MHD 平衡からず れるのかが、初めて実験的に、また定量的に明らか となった。

図 6.1.3: (a) 従来の MHD による平衡計算 (b) 拡張 MHD による平衡計算における再構成された電流密 度分布。拡張 MHD においては、最外殻磁気面外に 電流が存在し、また、内側の電流密度も高くなって いる。

小型センターソレノイドによるプラズマ形状制御

プラズマの断面形状は、プラズマの閉じ込め性能 に大きな影響を与えると考えられ、過去にはビーン型 形状、近年では負三角度形状が研究されている。高 周波維持プラズマの場合、これらの形状制御は、高 速電子の軌道の改変を介して電流駆動性能に大きな 影響を与え得る。そこで、交流オーミックコイル運 転用に製作した小型センターソレノイドを転用して、 プラズマ形状制御を試みた。このコイルは強磁場側 赤道面に局所的な磁場摂動を生成することが可能で あり、局所的にプラズマを内側に引き付けたり、外 側に押し付けることで、負の三角度やビーン型形状 を実現できると期待される。電子サクロトロン加熱 (ECH) によって維持されるプラズマを対象に実験を 行った結果、予想された形状制御が実現されたこと を可視カメラ画像、平衡解析により確認した。また、 ビーン形状はプラズマの上下位置不安定性を誘起し やすいことが確認された。一方、プラズマ電流のよ り高い LH 維持プラズマを対象にした場合は、形状 の変化は微小であった。今後、より高いコイル電流 での実験、電流駆動への影響の吟味が望まれる。

6.1.3 オーミックプラズマ実験

電子サイクロトロン波補助立ち上げ

近年、定常運転の確立を見据えた超伝導トカマク を用いた研究が国内外で始まっている。センターソ レノイドを超伝導化した場合、周回電圧の低下によ るプラズマ立ち上げの信頼度低下は解決すべき課題

図 6.1.4:最大プラズマ電流の重水素圧依存性。記号 の塗りつぶし有り:立ち上げ成功、塗りつぶし無し: 立ち上げ失敗。黒丸:ヌル磁場配位 (FNC)、赤三角: 捕捉磁場配位 (TPC)。縦線と矢印はそれぞれ立ち上 げ可能なガス圧限界とガス圧領域である。

である。電子サイクロトロン(Electron Cyclotron、 EC)波をオーミック立ち上げに適用することで、立 ち上げが容易になることが知られている。従来、放電 開始時の磁場配位には、このような EC 補助を行う場 合であっても、オーミック立ち上げで一般的なヌル磁 場配位(Field-Null Configuration、FNC)が用いら れてきた。一方、近年、非誘導 EC 立ち上げで用いら れる捕捉磁場配位(Trapped-Particle Configuration、 TPC)から放電開始することで、EC 補助オーミッ ク立ち上げにおいても信頼性が向上することが指摘 されている。2019 年度は TST-2 球状トカマク装置 を用いて、捕捉磁場配位とヌル磁場配位による、プ ラズマ立ち上げの違いを調査した。

各放電における最大到達プラズマ電流の重水素圧 依存性を図 6.1.4 に示す。EC 電力は 5 kW である が、これは当該放電におけるオーミック加熱電力と 同等の値である。塗りつぶし有りの記号が立ち上げ に成功した放電、塗りつぶし無しの記号は放電開始 (ブレークダウン)しない、または電離完了(バーン スルー)しなかった放電である。縦線は立ち上げ可 能なガス圧限界である。立ち上げが可能な高ガス圧 限界については、2つの配位で大きな差異は認めら れなかった。一方、ガス圧を下げていくと、捕捉磁 場配位においては単調に最大到達プラズマ電流が増 加したのに対して、ヌル磁場配位においては、0.04-0.05 mTorr あたりをピークに最大到達プラズマ電流 が減少した。ヌル磁場配位においては、0.03 mTorr 以下ではブレークダウンが大きく遅れたことにより、 垂直磁場波形とプラズマ電流の立ち上がりが不整合 となり、立ち上げに失敗した。捕捉磁場配位におい ても、約 0.015 mTorr 以下ではブレークダウンしな かったため、立ち上げに失敗した。この低ガス圧限 界の拡張により、捕捉磁場配位ではヌル磁場配位に 対して、立ち上げ可能なガス圧窓が1.7倍程広がる

図 6.1.5: 硬 X 線イメージング計測器の概略図。

ことがわかった。

低周回電圧での立ち上げにおいては、EC電力を適 用することが不純物のバーンスルーに効果的である が、ヌル磁場配位に対して大きな EC 電力を適用す ると、低ガス圧限界が大幅に狭まってしまう。今回 の実験で、捕捉磁場配位を用いることにより、この問 題を回避できることがわかった。また、ヌル磁場配 位で立ち上げ可能な領域であっても、捕捉磁場配位 の方がプラズマ電流の立ち上がりが速かった。これ は、捕捉磁場配位の方が、特に放電開始直後に、EC 電力が効果的に働くためであると考えられる。

IRE 時のフロー計測

オーミックプラズマにおいて、内部磁気再結合現 象(IRE)前後におけるフローの変化を可視分光器 を用いてドップラー法により計測した。また、IRE に伴う磁気揺動を磁気プローブの微分信号を用いて 計測した。不純物 CV (C⁴⁺)のラインを計測した結 果、IREの前後でフローが大きく変化することが確 認され、顕著な場合は 20 km/s ほどのフローの変化 が見られた。徐々に磁気揺動の大きさが増す放電に おいて、急激にフローが変化し始めるのは磁気揺動 の大きさがピークをむかえた後であった。同じ磁気 揺動の大きさでもフローの変化量が 2 倍ほど異なる こともあり、ピーク時の磁気揺動の大きさとフロー の IRE 前後の変化量には相関は見られなかった。

6.1.4 計測器開発

トムソン散乱計測

TST-2 球状トカマク型装置の低域混成波電流駆動 プラズマは 10¹⁷ m⁻³ ほどの低密度プラズマとなっ ている。今回、特にプラズマ密度の低い周辺部に重 点をおいて、トムソン散乱計測を試みた。この際、積 算によって低密度プラズマから得られる散乱光信号 の明瞭化を行った。積算信号数を 20 とした結果、こ れまで得られなかった周辺部の散乱光信号を得た。 その後に平衡計算から予測される磁気面とトムソン 散乱計測による解析結果を比較した。その結果、同 じ磁気面状にある異なる測定空間点において、イン ボード側の電子温度がアウトボード側の電子温度よ りも高いことが確認された。

硬 X 線イメージング

高周波駆動のプラズマ中の高速電子について調べ るために、高速電子から放射される硬 X 線の空間分 布をイメージングできる計測器を設計し製作した (図 6.1.5)。薄板状の LYSO シンチレーターとタングス テン合金のピンホールを用いたピンホールカメラ構 造である。シンチレーション光を計測する光電子増 倍管が TST-2 のトロイダル磁場の影響を受けないよ うに、シンチレーション光はライトガイドで伝送し て計測した。ピンホールを通過しない X 線はノイズ に相当するため、その侵入を防ぐために鉛で遮蔽し た。ライトガイドを1列に並べて計測するため1次 元の計測となるが、このライトガイド列の角度を変 え、再現性の良いプラズマで計測することで 2 次元 空間分布計測ができる。シンチレーター上の信号は 強磁場側で大きく、プラズマの位置変化に応じて変 化することが確認できた。

6.1.5 共同研究

QUEST におけるトムソン散乱計測

28 GHz の電子サイクロトロン加熱 (Electron Cyclotron Heating, ECH)の磁力線方向屈折率 (n_{\parallel}) 依存性を調べた。結果を図 6.1.6 に示す。 $n_{\parallel} = 0.26$ において最も高い電子温度 (570 eV) が得られた。

PPPL との共同研究

PPPL との共同研究として、軟 X 線検出器を用いた イメージング計測システムの設計および測定を行っ た。米国 Wisconsin-Madison 大学の MST 装置にお いて、PPCD (Pulsed Poloidal Current Drive) ブ ラズマを対象とした計測を行い、前年度までに行っ た軟 X 線発光量の計算値と測定値を比較した。測定 の結果、計算ではプラズマ中心において~120 Photons/pixel/msのX線放射が予想されていたのに対 し、計測では ~ 100 Photons/pixel/ms の発光が得 られ、計算と実験値が良い精度で一致することが確 認できた。また QST の JT-60SA 装置における中性 粒子ビーム加熱プラズマを対象とした発光量の計算 と本計測システムを導入することの有効性を検討し た結果、0.1 mm×4 mm のピンホールを用いた接線 視線での計測を行うことで、1 cm の空間分解能と 500 Hz の時間分解能で軟 X 線のイメージング計測 が実現可能であることがわかった。

<報文>

図 6.1.6: QUEST でのトムソン散乱計測結果。(上) 電子温度分布。(下)電子密度分布。

(原著論文)

- Y Kawamata, A Ejiri, K Matsuzaki, Y. Takase, N. Tsujii, T. Onchi and Y. Nagashima: "Improvement of Aperture Configuration to Reduce the Stray Light for Thomson Scattering Measurement Using a Peripheral Beam Profile Monitor," Plasma Fusion Res. 14, 1402072 (2019).
- [2] S. Yajima, Y. Takase, Y. Tajiri, Y. Takei, N. Tsujii, H. Yamazaki, C.P. Moeller and T. Shinya: "Development of capacitively-coupled combline antennas for current drive in tokamaks," Nucl. Fusion 59, 066004, (2019).
- [3] Y. Ko, N. Tsujii, S. Yajima, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, C.P. Moeller, Y. Yoshimura, Y. Yoshida, Y. Iida, K. Iwasaki, Y. Kawamata, S. Sakamoto, Y. Aoi, T. Oishi, K. Matsuzaki and J. Rice: "Measurement of the Lower Hybrid Wave Using RF Magnetic Probes on the TST-2 Spherical Tokamak," Plasma Fusion Res. 14, 3402107 (2019).
- [4] A. Ejiri, Y. Takase, N. Tsujii, S. Yajima, H. Yamazaki and O. Mitarai: "Theoretical study of preionization by inductive field in tokamaks," Nuclear Fusion 60, 036015 (2020).

(学位論文)

- [5] 山崎響:「Study of Plasma Current Start-Up by the Lower Hybrid Wave Using X-ray Measurements on the TST-2 Spherical Tokamak」
- [6] 松崎:「高周波立ち上げ球状トカマクにおける電子温 度密度分布計測」
- [7] 高竜太:「A study of lower hybrid wave propagation using RF magnetic probes on the TST-2 spherical tokamak」

<学術講演>

(国際会議)

一般講演

- [8] Y. Takase, A. Ejiri, N. Tsujii, S. Yajima, Y. Aoi, Y. Iida, K. Iwasaki, Y. Kawamata, Y. Ko, K. Matsuzaki, C.P. Moeller, Y. Peng, J. Rice, S. Sakamoto, H. Yamazaki and Y. Yoshida: "Plasma Start-up Experiment and Modelling on the TST-2 Spherical Tokamak," 23rd Topical Conference on Radiofrequency Power in Plasmas, Hefei, China, May 14–17, 2019.
- [9] H. Yamazaki, A. Ejiri, Y. Takase, N. Tsujii, O. Watanabe, Y. Ko, K. Iwasaki, Y. Aoi and TST-2 group: "Lower hybrid current drive experiments and x-ray measurements on TST-2 spherical tokamak," US-Japan workshop on RF Heating and Current Drive Physics, Princeton Plasma Physics Laboratory, NJ, USA, Sep. 4–6, 2019.
- [10] Y. Takase, A. Ejiri, Y. Ko, C.P. Moeller, N. Tsujii, O. Watanabe, H. Yamazaki, Y. Aoi, K. Iwasaki, K. Matsuzaki, Y. Osawa, Y. Peng, J. Rice: "Plasma Current Start-up and Rampup Experiments on the TST-2 Spherical Tokamak," 20th International Spherical Torus Workshop (ISTW2019), ENEA Centre, Frascati, Italy, Oct. 28–31, 2019.
- [11] N. Tsujii, Y. Yoshida, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, Y. Peng, K. Iwasaki, Y. Aoi, Y. Ko, K. Matsuzaki, J. Rice, Y. Osawa: "Modeling of the lower-hybrid wave driven plasma equilibrium with a hybrid-MHD model on the TST-2 spherical tokamak," 28th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan, Nov. 5–8, 2019.
- [12] Y. Ko, Y. Takase, A. Ejiri, N. Tsujii, O. Watanabe, H. Yamazaki, J. Rice, K. Matsuzaki, Y. Aoi, Y. Peng, Y. Osawa: "Observation of parametric decay instability in TST-2 lower hybrid wave driven plasmas," 28th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan, Nov. 5–8, 2019.
- [13] J.H.P. Rice, N. Tsujii, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, Y. Peng, K. Iwasaki, Y. Aoi, Y. Ko, K. Matsuzaki, Y. Osawa: "Development of Langmuir Probe Diagnostic for Measurement of Scrape-Off Layer Conditions in RF-Driven

Plasmas in TST-2," Toki, Gifu, Japan, Nov. 5–8, 2019.

- [14] K. Iwasaki, A. Ejiri, Y. Takase, N. Tsujii, O. Watanabe, H. Yamazaki, Y. Peng, Y. Aoi, K. Matsuzaki, Y. Ko, J.H.P. Rice, Y. Osawa: "Measurement of the flow of Ohmic plasmas on the TST-2 spherical tokamak," Toki, Gifu, Japan, Nov. 5–8, 2019.
- [15] Y. Nagayama, A. Ejiri, Y. Takase, H. Nakanishi, M. Ohsuna, H. Tsuchiya, S. Yamaguchi: "Measurement of Electron Density Fluctuations by Using the O-mode Microwave Imaging Reflectometry (O-MIR) in TST-2 Spherical Tokamak," 28th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan, Nov. 5–8, 2019.
- [16] O. Watanabe, H. Yamazaki, Y. Aoi, A. Ejiri, Y. Ko, K. Iwasaki, J.H.P. Rice, K. Matsuzaki, Y. Peng, Y. Osawa, N. Tsujii and Y. Takase: "Evaluation of X-ray penetration pass through shield gap of a hard X-ray measurement system," 28th International Toki Conference on Plasma and Fusion Research, Toki, Gifu, Japan, Nov. 5–8, 2019.
- [17] Y. Takase for the TST-2 Group: "Recent results from TST-2," 8th Workshop RIAM 2020, RIAM, Kyushu University, Jan. 30–31, 2020.
- [18] Y. Peng, A. Ejiri, K. Matsuzaki, Y. Takase, N. Tsujii, O. Watanabe, Y. Osawa, H. Yamazaki, K. Iwasaki, Y. Aoi, R. Ko, J. Rice: "Thomson scattering system in TST-2," 8th Workshop RIAM 2020, RIAM, Kyushu University, Jan. 30–31, 2020.
- [19] J.H.P. Rice, N. Tsujii, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, K. Iwasaki, Y. Peng, Y. Aoi, K. Matsuzaki, Y. Ko, Y. Osawa: "Detection of fast electrons in SOL plasma using a Langmuir probe diagnostic," 8th Workshop RIAM 2020, RIAM, Kyushu University, Jan. 30–31, 2020.
- [20] Y. Ko, Y. Takase, A. Ejiri, N. Tsujii, O. Watanabe, H. Yamazaki, Y. Peng, J.H.P. Rice and TST-2 group: "Measurement of LH waves using RF magnetic probes," 8th Workshop RIAM 2020, RIAM, Kyushu University, Jan. 30–31, 2020.

招待講演

[21] Y. Takase: "Review of ST Fusion Energy R&D, The First ENN ST & FRC Compact Fusion Workshop and Advisory Board Meeting," ENN, Langfang, China, Dec. 5–6, 2019.

(国内会議)

一般講演

[22] 江尻晶、高瀬雄一、辻井直人、渡邉理、山崎響、Peng Yi、岩崎光太郎、青井優樹、高竜太、松崎亨平、Rice James、大澤佑規:「球状トカマク TST-2 における最 近の研究」、研究会「先進トカマク概念の深化」、核融 合科学研究所、土岐、2019 年 9 月 5-6 日.

- [23] 山田巌、弥富豪、辻井直人:「TST-2 におけるプラズ マ立ち上げ条件」、研究会「先進トカマク概念の深化」、 核融合科学研究所、土岐、2019 年 9 月 5-6 日.
- [24] 弥富豪、山田巌、辻井直人:「TST-2の誘導立ち上げ におけるバーンスルーのモデリング」、研究会「先進 トカマク概念の深化」、核融合科学研究所、土岐、2019 年9月5-6日.
- [25] 辻井直人:「TST-2 における無誘導球状トカマク立ち 上げ実験」、研究会「先進トカマク概念の深化」、核融 合科学研究所、土岐、2019 年 9 月 5-6 日.
- [26] 江尻晶、高瀬雄一、辻井直人、渡邉理、山﨑響、彭 翊、岩崎光太郎、青井優樹、高竜太、松崎亨平、Rice James、大澤佑規、Moeller C.P.、笠原寛史、斎藤健 二、関哲夫、吉村泰夫、御手洗修:「TST-2 における 非誘導球状トカマクプラズマの形状制御実験」、日本 物理学会 2019 年秋季大会、岐阜大学柳戸キャンパス、 岐阜、2019 年 9 月 10-12 日.
- [27] 江尻晶、高瀬雄一、辻井直人、渡邉理、矢島悟、山﨑 響、御手洗修:「トカマクにおける誘導予備電離の理 論研究」、日本物理学会 2019 年秋季大会、岐阜大学 柳戸キャンパス、岐阜、2019 年 9 月 10-12 日.
- [28] 渡邉理:「計算コード PHITS を利用した X 線計測の 改善」、第16回 QUEST 研究会~核融合技術の進展と 球状トカマク研究~、九州大学筑紫キャンパス、2019 年10月 3-4 日.
- [29] 高竜太、辻井直人、高瀬雄一、江尻晶、渡邉理、山崎 響、James Rice、松崎享平、青井優樹、Peng Yi、大 澤佑規:「TST-2 における低域混成波波動計測」、第 16 回 QUEST 研究会~核融合技術の進展と球状トカ マク研究~,九州大学筑紫キャンパス,2019 年 10 月 3-4 日.
- [30] 松崎亨平、江尻晶、Peng Yi、大澤佑規、恩地拓巳、 永島芳彦、花田和明、出射浩:「QUEST 球状トカマ ク装置におけるトムソン散乱計測システムの迷光対 策」、第36回プラズマ・核融合学会年会、中部大学春 日井キャンパス、2019年11月29日-12月2日.
- [31] 青井優樹、高瀬雄一、江尻晶、辻井直人、渡邉理、山 崎響、彭翊、岩崎光太郎、高竜太,松崎亨平、James Rice、大澤佑規:「TST-2 における低域混成波プラズ マの硬 X 線空間分布測定の開発」、第 36 回プラズマ・ 核融合学会年会、中部大学春日井キャンパス、2019 年 11 月 29 日-12 月 2 日.
- [32] 長山好夫、江尻晶、高瀬雄一、辻井直人、中西秀哉、 大砂真樹、土屋隼人、山口聡一朗:「TST-2 での MIR 計測」、第 36 回プラズマ・核融合学会年会、中部大学 春日井キャンパス、2019 年 11 月 29 日–12 月 2 日.
- [33] 渡邉理、江尻晶:「X 線分布計測のためのステップ型 コリメータの提案」、第 36 回プラズマ・核融合学会 年会、中部大学春日井キャンパス、2019 年 11 月 29 日-12 月 2 日.

招待講演

[34] 高瀬雄一:「シンポジウム S1: BA フェーズ I の成果 と BA フェーズ II 計画「先進プラズマ研究からの期 待」」、第 36 回プラズマ・核融合学会年会、中部大学 春日井キャンパス、2019 年 11 月 29 日–12 月 2 日.